Ultrasound sonication with microbubbles disrupts blood vessels and enhances tumor treatments of anticancer nanodrug

نویسندگان

  • Chung-Yin Lin
  • Hsiao-Ching Tseng
  • Heng-Ruei Shiu
  • Ming-Fang Wu
  • Cheng-Ying Chou
  • Win-Li Lin
چکیده

Ultrasound (US) sonication with microbubbles (MBs) has the potential to disrupt blood vessels and enhance the delivery of drugs into the sonicated tissues. In this study, mouse ear tumors were employed to investigate the therapeutic effects of US, MBs, and pegylated liposomal doxorubicin (PLD) on tumors. Tumors started to receive treatments when they grew up to about 15 mm(3) (early stage) with injection of PLD 10 mg/kg, or up to 50 mm(3) (medium stage) with PLD 6 (or 4) mg/kg. Experiments included the control, PLD alone, PLD + MBs + US, US alone, and MBs + US groups. The procedure for the PLD + MBs + US group was that PLD was injected first, MB (SonoVue) injection followed, and then US was immediately sonicated on the tumor. The results showed that: (1) US sonication with MBs was always able to produce a further hindrance to tumor growth for both early and medium-stage tumors; (2) for the medium-stage tumors, 6 mg/kg PLD alone was able to inhibit their growth, while it did not work for 4 mg/kg PLD alone; (3) with the application of MBs + US, 4 mg/kg PLD was able to inhibit the growth of medium-stage tumors; (4) for early stage tumors after the first treatment with a high dose of PLD alone (10 mg/kg), the tumor size still increased for several days and then decreased (a biphasic pattern); (5) MBs + US alone was able to hinder the growth of early stage tumors, but unable to hinder that of medium stage tumors. The results of histological examinations and blood perfusion measurements indicated that the application of MBs + US disrupts the tumor blood vessels and enhances the delivery of PLD into tumors to significantly inhibit tumor growth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation into the impact of diagnostic ultrasound with microbubbles on the capillary permeability of rat hepatomas.

Ultrasound-targeted microbubble destruction (UTMD) takes advantage of transiently increased capillary permeability to enhance the release of tumor-specific drugs from blood vessels into sonicated tumor tissues. However, the application of focused ultrasound is limited because of the lack of an appropriate image-monitoring system. In this study, hepatoma-bearing Sprague-Dawley rats were insonica...

متن کامل

Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature.

PURPOSE New strategies to detect tumor angiogenesis and monitor response of tumor vasculature to therapy are needed. Contrast ultrasound imaging using microbubbles targeted to tumor endothelium offers a noninvasive method for monitoring and quantifying vascular effects of antitumor therapy. We investigated the use of targeted microbubbles to follow vascular response of therapy in a mouse model ...

متن کامل

Feasibility of noninvasive cavitation-guided blood-brain barrier opening using focused ultrasound and microbubbles in nonhuman primates.

In vivo transcranial and noninvasive cavitation detection with blood-brain barrier (BBB) opening in nonhuman primates is hereby reported. The BBB in monkeys was opened transcranically using focused ultrasound (FUS) in conjunction with microbubbles. A passive cavitation detector, confocal with the FUS transducer, was used to identify and monitor the bubble behavior. During sonication, the cavita...

متن کامل

The effects of ultrasound on blood-brain barrier

The brain is protected from the entry of foreign substances by blood-brain barrier (BBB), but becomes a barrier while chemotherapy is needed for the brain diseases. Ultrasound with microbubbles (MBs) has been shown to noninvasively increase the permeability of the BBB in the normal tissue and brain tumor. The real mechanism for disruption is still unknown. Hemorrhage was usually found in the so...

متن کامل

Identifying the inertial cavitation threshold and skull effects in a vessel phantom using focused ultrasound and microbubbles.

Focused ultrasound (FUS) in combination with microbubbles has been shown capable of delivering large molecules to the brain parenchyma through opening of the blood-brain barrier (BBB). However, the mechanism behind the opening remains unknown. To investigate the pressure threshold for inertial cavitation of preformed microbubbles during sonication, passive cavitation detection in conjunction wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012